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Combinatorial approach to Feynman path integration 

Richard E Crandall 
Department of Physics. Reed College, Portland, Oregon 97202. USA 

Received 20 November 1992 

Abstract. Combinatorial relations can be used to convert the non-relativistic time-sliced 
Feynman path integral into perturbation expansions. These methods reveal thal when the 
time interval is sliced into N increments, each order of perturbation theory sustains an error 
0(1/ JN). In this way we provide exact path integral results for the following potentials: 
delta-function comb, finite well, tunnelling barrier. and a generalized expnential cusp. For 
the tunnelling barrier it is seen how the celebrated (-1) reflection factor arises in the limit of 
infinite barrier height. The one-dimensional Coulomb problem is solved as a limiting case of the 
exponential cusp. In addition, for power potentials we indicate how this path integral approach 
yields sometimes divergent, nevertheless asymptotic perturbation expansions. 

1. Introduction and nomenclature 

Feynman path integration was first proposed (Feynman 1948) as a constructive scheme 
for evaluation of the non-relativistic spacetime propagator. For one space dimension 
and time-independent potential V ( x )  the propagator is the solution K ( " ) ( x ,  t lxo,  0) to the 
Schroedinger equation ( h / k  ='m = 1): 

subject to the impulse condition K(")(x,  Ojxg, 0) =~ S(x - x g ) .  The propagator for a free 
particle ( V  = 0) is 

whose derivation is the elementary starting point of path integral analysis. A vast literature 
has addressed the issue of non-trivial potentials. To mention a few successful examples, 
exact path integrals have been carried out for linear and quadratic potentials (Feynman 
and Hibbs 1965), quadratic plus inverse-square potentials (Khandekar and Lawande 1973, 
and the delta-function potential (Gaveau and Schulman 1986, Goovaerts et al 1973, Bauch 
1985). The Coulomb problem in three and higher dimensions has been resolved (Duru 
and Kleinert 1979, Goovaerts and Devreese 1972, Ha and Inomata 1982) by path integral 
evaluation of the space-energy Green's function which,' as we momentarily discuss, is 
directly related to K('). Space-time propagators have also been obtained via path integration 
for various curved spaces (Schulman 1968,'Dowker 1970, 1971). The exact spacetime 
propagators are'known for reflectionless potentials, such as V ( x )  = -2sech'x (Gaveau and 
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Schulman 1986, Crandall 1983) but as yet there is no satisfactory path integral derivation 
of such propagators. 

In the present treatment we develop, through combinatorial analysis, perturbation 
expansions that result in path integral solutions for various new settings. We are able to 
address successfully the following cases: delta-function combs, the finite potential well, 
the problem of barrier reflection, a generalized exponential cusp, and power potential 
asymptotics. In particular, the barrier reflection and exponential cusp analyses give rise 
to new results. For barrier reflection; we show how the much-discussed factor of (--1) 
corresponding to an infinite wall reflection component arises naturally from the spacetime 
propagator for a potential step of asymptotically large height. The exponential cusp form 
we analyse leads to a path integral solution for the one-dimensional Coulomb problem. 

We next establish further nomenclature along standard lines (Kleinert 1990). The space 
energy Green's function G(") (X,XO,  E )  is a particular solution of 

The Green's function and spacetime propagator are related as follows: 

The left-hand side in this last relation is the so-called retarded propagator, which vanishes 
for t e 0. To ensure this, the E line integral in (1.5) is to be taken just above the real E-axis. 
Both G and K contain information about all Schroedinger eigenstates. The usual formal 
expansions involving the normalized wave functions [Wm) and corresponding eigenvalues 
[Em] are: 

(1.6) 

where it is understood that these sums over quantum numbers m will generally include 
discrete sums over bound states plus integrals over continuum states. In the common 
setting for which there exist bound states (E, e 0) and also continuum states ( E  > 0) one 
may split the contour in (1.5) to encircle the poles of (1.7) and, separately, to encircle the 
cut discontinuity on the positive real E axis: 

(1.8) 

The E-plane poles of G correspond to the bound eigenvalues,~with the residues ResE(G) 
involving the spatial wave functions. For the free particle case, the standard solution to 
(1.3) is: 
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The delta-function in (1.3) arises from the fact that Disc,G'/,, = 2, which is a good 
checking relation for a proposed Green's function for any ~ continuously differentiable 
potential. For the free particle there are no bound states. and the branch cut relation 

(1.10) 

with k2 =.2E yields, via (l.S), the correct free particle propagator (1.2). We shall have 
occasion also to describe a earsmission coefficient, defined by 

(1.11) 

so that this T ,  and hence a transmission probability ITI2, can glso be derived via path 
integration for certain potentials: 

2. Development of the path integral 

One way to define the path integral appropriate to K(") is to slice the time interval (0, t )  into 
N equal increments. For sufficiently regular potentials, one asserts that, in some appropriate 
sense of limit (Schulman 1981): 

K(") = limKN(V) (2.1) 
N 

where the time-sliced propagator is: 

K~,v) = J ~ [ p a t h s l ~ s [ ~ d ~ .  (2.2) 

The path Jacobian D[ ] and action S are assumed to depend on a coordinate path 
(xo. XI, . . . , XN = x )  as follows: 

= T[pathl - V[pathl 

Note that some authors prefer to take the second summation in (2.4) from m = 0. which 
involves an extra term involving V(x0) that is unimportant to our ultimate analysis. On 
the idea that V(x) vanishes sufficiently rapidly for large 1x1, which is the essential idea 
underlying perturbation expansions, we invoke the obvious formal relation . 

m 
f ( x )  exp (- i iV(x))  dx = j m  f f x )  dx + 1: f ( x )  (exp (-ii,V(x)) - 1) dx 

-m 
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and conclude that the N-time-slice propagator is: 

where MN-1 consists of all ordered subsets of the symbols [ I ,  2,3, , , . , N - I), incuding 
the empty set (in which case the product is defined to be 1). Now any non-empty subset 
m, with card (m) = j ,  having elements {mo, . . . , mj-I) can be uniquely characterized by a 
( j  + 1)-tuple: 

L ( m ) = ( m o , m l - m o  ,..., mj-1-mj-2,N-mj-1) 

= (Lo,. . . , Lj). (2.7) 

We extend this assignment by defining, for the empty set m, L = [LO) = [ N } .  Note that 
the elements of L always sum to N .  Now the integral (2.2) can be reduced via the identity: 

which in (2.6) applies to any integration over dxj when j is not an element of the subset 
m, for such integrations do not involve the potential. It follows that 

where 

(2.10) 

with yo = xo, yj+i = x ;  and each Li is a positive integer. The j = 0 case of the combined 
integral and k-product in (2.9) is just 1, which observation amounts to an immediate 
derivation of the free particle propagator (1.2). In the free case (2.8) effectively reduces the 
path integral (2.6) compldtely. 

The representation (2.9) is central to the combinatorial derivations that follow. But 
alternative representations are also useful. We observe that (2.9) involves convolutions, and 
we are moved to define: 

whence an alternative form of the time-sliced propagator is 

(2.11) 

(2.12) 
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where, again, any empty products are 1 and the LI are positive integers. 
The basic formulae (2.9) and (2.12) are exact expressions-subject to appropriate 

convergence criteria-for the N-fold time-sliced spacetlme propagator. One could 
conceivably argue that N should immediately be taken to infinity, in which case various 
established perturbation expansions would result. But there is some value in keeping N 
finite for the moment. For one thing, any numerical evaluations of path integrals that assume 
finite N can be assessed for their accuracy, if we are careful to establish how a finite N 
affects a perturbation expansion. It is the problem of the largeN l i t  to which we now 
turn. 

3. Combinatorial relations 

Our representations of the timesliced propagator KL") involve combinatorial sums over 
order-(j + 1) partitions of N. With a view to representation (2.9) we consider, for vectors 
d = [do,. . . , dj]  the sum 

i 
S N j ( d ) =  n L;'/'exp 

Lo+ ...+ L,=N m=O 

This sum is difficult to analyse in any exact sense, but rigorous asymptotic analysis can be 
performed. We shall be able to give the leading large7N term of (3.1). Take first the special 
case: 

(3.2) 

If we approximate this sum by a surface integral over an appropriate section of the (j  + 1)- 
dimensional sphere of  radius^ J N ,  we arrive at an estimate 

(3.3) 

where nothing is known apriori about the error term E ( N ,  j ) .  But we can observe that 

We then apply this identity recursively to the estimate (3.3). It turns out to be enough to 
provide a.sufficiently sharp estimate~of the sum: 

Such an estimate can be obtained by writing this last sum as,an.integral of the function 
[L]-'/*(N - [L])j/'-' where [ ] denotes greatest integer. One may show in this way that, 
for example ' ' 
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where B denotes the beta function. One may in turn provide an estimate on the error term 

IE(N,  j ) l  (3.7) 

where C is an absolute constant. The precise nature of the E term is still mysterious, but 
what we can say is that 

where the implicit big-0 constant is absolute, meaning both j -  and N-independent. 
The result (3.8) is enough to solve specialized path integral problems, such as the 

problem of the delta-function potentials' ground state energy in section 4. but we still need 
to address the general sum (3.1). There is an attractive method for obtaining heuristic initial 
estimates of general sums involving functions fm: 

One integrates over  LO + . . . + Lj  - N) to infer a large-N behaviour: 

(3.9) 

(3.10) 

For the combinatorial sum (3.1) this delta-function method may be applied, together with 
the integral identity: 

to give a convenient contour representation of the leading term: 

sNj (d) NV-l)/z,(j+l)/Zl (_z)-(j+l)/ze-Ze-z~'cldnl+.. '+l~,~) dz (3.12) 
2, i 

where the contour C circles the origin counter-clockwise, sufficiently tightly enclosing the 
positive real z-axis. Note that ford = 0 we recover, via the standard contour representation 
of 1/ r, the original leading term estimate in (3.3). By series expansion of the d-dependent 
exponential, one may use error function representations (Abramowitz and Stegun 1965) to 
perform the contour integral. Further error analysis of the style embodied in (3.4)-(3.7) 
gives the general estimate: 

sNj(d) = ~ t i - ] ) / Z , ( 1 + 1 ) / ~ 2 j - ~ ~ i - ~ ~ ~ f ~ ( ~ ~ )  ( 1 + 0 (5)) (3.13) 

where D = Idol + . . . + ldjl, and Perfc is the iterated error function of order n. For fixed 
d the implicit 0 constant is independent of both j and N.  For d = 0, hence D = 0, the 
result (3.13) is consistent with (3.8). 

The integral (3.12) can be used to establish large-N limits for the sliced-time propagator. 
Starting with (2.9), and observing that e-itv/N - 1 = -itV/N + 0(l/N2), we arrive after 
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some straightforward manipulations to a formal perturbation series for the spaceenergy 
Green's function: 

m j+i 
G'"'(x,xo, E )  = (2) 

j=o 

with *e empty integral defined to be & I x - * l J ( Z E ) ,  which rule gives the j = 0 term as 
the correct free Green's function (1.9). The perturbation expansion will be recognized as 
nothing new, amounting essentially to iteration of a standard Lippman-Schwinger scattering 
expansion (Schiff 1968) for non-relativistic settings. The point, however, is that we have 
shown that for every j ,  the j t h  term in (3.14) is approximated to O(l/&) by the time- 
sliced propagator. This means that whenever one can sum the perturbation series, one can 
in principle trace back to the  original path integral definition, and so claim that the path 
integral has been resolved. 

An alternative analysis, again using partitions L of N ,  starts with (2.12). uses the 
delta-function method embodied in (3.10), and results in a second representation for the 
space-energy Green's function: 

where the empty m-product is defined as 1 and V" is the transformed potential: 
m 

~ ( k )  = i / V(x)e-'kXcix. (3.16) 

This second expansion (3.15) is also standard, in fact it gives rise to instructional Feynman 
diagrams for non-relativistic scattering. But again, if a problem can be solved with this 
expansion, the solution can in principle be recast in terms of the original time-sliced 
propagator. 

Before we proceed to solutions for specific potentials, we establish another kind of 
combinatorial relation. For given complex T., integer M, integers bo. 6610, M - 11, and a 
collection of complex numbers UO, . . . . U,+,-!; consider a function of complex z: 

2rr -m 

where the second sum is over tuples (61,. . . , bj}, and the empty second sum for j = 0 is 
defined to be Tlh-hol. In the theory of connected graph combinatorics and adjacency matrices 
(Stanley 1986, Buhler 1992) one considers all graphs connecting bo -+ bl -+ . . . -+ b, + b 
to arrive at a matrix representation 

(3.18) 

where the T matrix has elements Zj = Tli-jl and the U matrix is diagonal, with Uii = Cli; 
both matrices being M-by-M. The resemblance of the combinatorial sum (3.17) to the 
perturbation expansion (3.14) is evident. ~ We shall be able to apply the result (3.18) to 
various problems in which the potential may be thought of as a dense comb of delta 
functions. Forxuch problems path integration comes down to an exercise in matrix algebra. 
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4. Delta-function potentials 

Perhaps the most direct derivation of a ground state energy from a time-sliced propagator 
is to apply the special combinatorial case (3.8) to the Kr) representation (2.9) for the 
potential V ( x )  = -AS(x). Here, A is a positive real constant, and one might wish to 
preserve rigour by approximating V by a very narrow, appropriately deep potential well; 
though the asymptotics are not particularly illuminating and are best handled via the finite 
well solution that we discuss later. The correct observation is that, on the basis of (2.9), 
and for spatial endpoints x = xo = 0 

which, from (3.8) results in 

K'V'(0, t10,O) = - 1 + A E e x p  ( i q )  erfc (-A&) (4.2) A z  

where we have made use of standard series expansions for erfco (Ambramowitz and Stegun 
1965). From the eigenfunction expansion (1.6) we can employ the Feynman-Kac limit 
(Schulman 1981), that is t = -is 4 -iw, to infer a leading term WP*e-'EU, so that the 
ground state has energy 

Eo -A2/2. (4.3) 

For more general spacetime endpoints, one may use the general combinatorial form (3.13) 
to express the complete spacetime propagator in terms of error functions. The expansion 
(4.1) is preserved but with 0 replaced by d = [xo,O,  ..., O , x ]  when j > 0, and by 
d = ( x  - X O ]  for j = 0. The propagator has been obtained separately via Laplace transforms 
and iterated error function identities by Bauch (1985). But within the present context there 
is a convenient way to derive this propagator. We appeal to the space-energy form (3.14). 
Trivial integrations for the delta-function potential at hand result in 

As expected, there is a pole for the energy (4.3). and the ground state wave function can 
be seen to be the well-known exponential cusp. One may apply with care the cut relation 
(1.8) to obtain the exact spacetime propagator as: 

in agreement with known results (Ga\!eau and Schulman 1986). 
We next turn to the problem of the delta-function comb. Define the potential 

(4.6) 
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where M simply counts the number of delta-functions in the problem. Using (3.14) and 
the combinatorial analysis starting with (3.17), we can obtain the space-energy Green's 
function for spacetime endpoints lying precisely on delta locations. Assume that bo = Mxo 
and b = M x  are integers lying in [0, . . . , M - I]. Then the exact Green's function for such 
spatial endpoints is 

(4.7) 

where k = ,,@E), z = iA/Mk, and T, for mh[O; M - 11 is generally the m x m matrix 
having TCd = On the other hand, for any spatial endpoints that 
straddle the entire comb, that is x > ( M  - l)/M, xo < 0, we have 

where T = 

G'"(x, XO, E )  -- i (  - TM ) exp(ik(x-xo-- M 
k T-ZTM O,M-I 

(4.8) 

Note that for coupling constant A + 0, both (4.7) and (4.8) approach the correct free 
Green's function (1.9). For this problem, and to a greater extent the ensuing problem of 
the finite well, we require some matrix algebra. Detailed analysis of the matrix 1 - zT, 
results in the following relations, which serve to determine completely the inverse of the 
full matrix 1 - ZTM. Define 

D, = det(1- ZT,) (4.9) 

Then one may establish, via row- and column-reduction, the following recursion (Mayer 
1992): 

D,=(1-z+( l+z)T2)D,-~  -TZDm-z (4.10) 

where DO = 1, D I  = 1 - z. Furthermore, by analysing minors one finds that the diagonal 
elements of (1 - zTM)-' satisfy: 

(4.11) 

while the off-diagonal elements, for say M > a > b > 0, satisfy: 

(4.12) 

The Green's function may now be deduced in terms of these relations for the full matrix 
inverse using: 

(Db+l D b ) ( D M - a  DM-~-I)  To-b 
(1 - Z T M ) ; ~  = - 

Z DM 

-T 1 1 1  - 
1-zT z z l - Z T '  

(4.13) 

From (4.12) and (4.8) one may conclude that for straddling endpoints x > ( M -  l)/M, xo < 
0 : ~  

G"(x, XO. E )  
G(')(x, E )  = 

DM 
(4.14) 
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This result can now be shown to imply known delta-comb results. From the recurrence 
(4.10) and the definition 

1 - 2 + (1 + ZIT2 ,,,, 
W =  ~~ 

2T 
(4.15) 

we can use standard relations for the Chebyshev polynomial of the second kind (Abramowitz 
and Stegun 1965) to deduce an alternative recurrence: 

Dm = Z"(U,(UJ) - (1 + z ) T U m - t ( ~ ) ) .  (4.16) 

This, together with the identity 

(4.17) 

is enough to establish, via (4.14) and (l.ll), the transmission probability for an M delta- 
function comb (Griffiths and Taussig 1992): 

2 U; - 2wumum-, + um-l = 1 

(4.18) 

One might wonder whether the exact Green's function (4.14) can be used, in the spirit 
of (4.4)-(4.5), to obtain the spacetime propagator for the comb. The answer is yes: in 
principle, one may always obtain an expression for K("' in terms of a finite number of 
error function integrals. This analysis shows that the spacetime propagator for the delta- 
function comb can be completely resolved via path integration: for given M ,  one computes 
D M ,  then performs the discontinuity calculus. One may expand this approach to allow more 
general mafxices U in the general formula (3.18). There is the option of expressing any 
potential as a sufficiently dense comb, with the elements of U varying according to the 
specific potential. To exemplify the dense comb limit we next turn to the problem of the 
finite well. 

5. Finite well potential 

The previous results enable a complete path integral solution for the finite well: 

x < o  

X > l  

V ( x )  = { ; A  O < X < l  

where A is a positive constant, alfhough results for the finite potential step (A < 0) can 
be inferred via analytic continuation. We represent V by an extremely dense delta-function 
comb of the type (4.6). We assume that the large44 h i t s  of (4.7), (4.8) for the comb 
will give the correct space-energy Green's function for the well. Whether a dense comb 
approximation to a potential is valid is problematic; but at least our eventual solution will 
satisfy the fundamental Schroedinger definition (1.3). 

The idea is to compute (4.7), (4.8) in the dense comb limit, M + CO. We first observe 
that any sequence satisfying a recurrence such as (4.10) can be represented by: 

D, = a+.," + a-r? ~~ (5.2) 
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where r+ a e  roots of a certain quadratic equation, which equation can be obtained by 
inserting the ansatz (5.2) into the recurrence..In fact, for the previous delta comb definitions 
z = iA/kM, T = $'IM we have 

V * C  
r* = - 

2 ~. 

l i u  
a* = - 

2c 
U = 1 - z - (1 + ZITZ 

~~ 

These relations can now be used io express (4.7), (4.8) in terms of r+, by proper use of 
the mahix relations (4.11), (4.12).  taking the large-,M dense comb limit is an inhicate 
and tedious task, so we simply state the final result as follows. For spatial endpoints 
0 < xo < x < 1, the finite well Green's function arises from (4.7) as: 

-i h(xo)h(l - x )  
kRRcosR- ias inR 

G(")(x,  X O ,  E )  = - 

and k = J(2E).  and 

A 
a = k f -  

k 

R = & i G  

with the function h defined by: 

(5.5) 

h(z )  = R cos Rz - ik sin Rz. (5.6) 

For 0 < x < xo < 1 ,  one reverses the roles of the spacetime endpoints on the right-hand 
side of (5.4). The space-energy Green's function (5.4) is exact for the given constraints 
on the spatial endpoints. Further analysis in the style that led to (4.8) gives the finite well 
Green's function for arbitrary spacetime endpoints as: 

where 

z > l  
c ( z ) = z  o < z < 1  1: z < o  

(5.7) 

1 

0 otherwise. 
( (x  > 1) and (y =- 1)) or ( ( x  < 0) and ( y  < 0)) 

(5.8) A(x, Y )  = 
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Note that 0 < c( ) < 1 so that (5.7) can always be computed from (5.4). Regardless 
of all the convergence problems encountered in our path integral derivation of the exact 
Green's function (5.7). one can check that this G'"' solves (1.3), in particular the boundary- 
discontinuity relation Disc,G'I,, = 2 is satisfied always. When xo, x both lie within the 
well. this discontinuity arises from the re-ordering rule (remark after (5.6)). The transmission 
coefficient is obtained immediately from the limit relation (1.1 1) as: 

R 
Rcos R - iasin R 

T ( k )  = emiK 

giving the inverse transmission probability 

(5.9) 

(5.10) 

This standard result for the finite well can be derived independently from the comb formula 
(4.18) by considering the large-M asymptotics of Chebyshev polynomials (Griffiths 1992). 

The bound states of the finite well are signified by the E-poles of (5.7). Evidently the 
bound states correspond to occurrences in (5.4) of 

ia = R cot R 

= R(cot RI2 - tan R/2 ) /2  

which amounts to 

( R  tan R I 2  + ik)(R cot Rj2 - ik) = 0. 

(5.11) 

(5.12) 

It is interesting that the path integral analysis gives just one transcendental pole relation 
(5.11) which turns into a pair of transcendental root relations (5.12). Indeed the standard 
textbook solution for even and odd states involves, respectively, the tan, cot root relations 
of (5.12) (Schiff 1968). At the poles, the internal sinusoidal bound state wave functions are 
the residues; namely the h functions in (5.4). The Green's function (5.7) is also correct for 
A -+ -A ,  but the usual rule, that Im(k) > 0, rules out any bound states. 

The dense comb analysis has given us a valuable by-product, a means by which certain 
iterated integrals of the type (3.14) can be obtained in closed form. For the finite well, 
one could avoid a priori the dense comb picture, and start from (3.14) where each spatial 
integral is performed over [0,1]. I t  is enough to evaluate the generating function: 

where the empty integral is defined to be eiK1x-~ll, and Im(k) =- 0. Instead of appealing to 
the dense comb limit, we merely use the combinatorial generating function (3.17) to solve 
the somewhat forbidding calculus problem of evaluating f .  One has: 

f ( x , x o , z , k ) =  lim g 
M+m 

(5.14) 

with T = eikIM, U = 1, and for each M the T and U matrices are each M x M. As 
before, the relations (5.2)-(5.3) and (4.10)-(4.13) result in a closed form for the generating 
function f. For spatial endpoints xo < x in [0,1] we obtain: 

(5.15) 
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where p = J(kZ - Ukz) ,  (Y = k - iz .  An attractive special case is the exact evaluation of 
(5.13) for both spatial endpoints vanishing: 

.- 
p- ik tanp  . , -  

p - irxtanp’ f(0, 0, z, k )  = (5.16) 

One need only to establish this case of the generating function (5.13) to infer a path integral 
solution for all of the bound state energies. -Each energy pole appears because our well is 
centred at 112, so that both even and odd wave bound state functions are non-zero at the 
origin. 

, 
6. knel l ing  barrier . , 

Consider the finite barrier potential 

B x > O  
l o  n c o  

V ( X )  = 

where e. is a positive constant. We can evaluate the Green’s function representation (3.14) 
on the basis of the generating function: 

with the empty integral defined as per the remarks following (5.13). In terms of the 
corresponding finite well generating function (5.13) we scale the integrals in (6.2) to obtain: 

F ( x , x o , z , k ) =  lim f(- ’ x - , Y z , Y k )  xo 
Y - a ,  Y ’ Y  

for both x ,  xo 2 0, one concludes from (5.15) that: 

where 

Q =  I-- .  d-T 
For no < 0 and n 2 0 the defining relation is: 

F(x&. z ,  k )  = e-jb0F(x, 0. z ,  k )  

and when both x ,  xo < 0 we have 

(6.3) 

F ( X ,  x ~ ,  Z .  k )  = e-’k(x+XO)F(O, 0. z ,  k ) .  (6.7) 

The generating function (6.2) thus yields the complete spaceenergy Green’s function as: 
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x > xo 0: 

x a 0  2 xo: 

G ( v ( ~ , ~ ~ ,  E )  = - 2 i e i ~ ~ x - k x " ~  
k +x  

x ,  xo < 0: 
k k - R  

~ ( " ' ( x ,  xo, E )  = G@)(x,  xo,  E )  - i--e-'K"+'l~) (6.8) R k + R  

where 

(6.9) 

The spaceenergy Green's function (6.8) allows us to resolve the long-standing problem of  
just how the spacetime propagator acquires a reflection term for an infinitely high barrier. 
Assume that both x ,  xo < 0, so we are considering propagation for spacetime endpoints 
both to the left of the barrier. One may perform the discontinuity integral (1.8) for the third 
Green's function representation of (6.8). This procedure is intricate, involving discontinuous 
Weber-Schafheitlin integrals relevant to the study of Bessel functions. The formal result is, 
for time t = 0, 

R = m." '"I , , , I .  , , 

where JZ is the Bessel function of order 2. For the given spatial endpoints this initial 
condition propagates according to the free time-dependent Schroedinger equation, so that 

(6.11) 

This is the exact spacetime propagator for spatial endpoints x ,  xo 6 0. Finally we can see 
how the spacetime propagator acquires a reflection factor of (-1) due to an infinite barrier. 
Indeed, as B -+ 00, we can use the interesting representation: 

lim 2J2(Cz)/z = 6(z). (6.12) 
C-a, 

This follows from the relation (Abramowitz and Stegun 1965): 

(6.13) 
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Indeed, the right-hand side has integral 1/2 over e<[O, 001, the area being progressively more 
localized near the origin as C + 00. We infer that for infinite barrier height the propagator 
(6.11) becomes: 

The exact solution (6.11) shows that contributions to the celebrated (-) sign in (6.14) for 
the reflection term come from~ various depths into the potential step, in a complicated way. 
In fact, there is a kind of Gibb‘s phenomenon: the (-1) reflection coefficient is in actuality, 
for large finite B ,  an oscillatory term made up from stationary points of the (6.11) integrand. 
Such stationary points arise from the local minima and maxima of the appropriate Bessel 
functions. Asymptotic analysis of the reflection coefficient is’difficult, but analysis of the 
integral (6.1 1) for large B gives at least the leading reflection term: 

showing again the limit (-1) as B -+ 00. 

7. Generalized exponential cusp and the Coulomb problem 

We now consider the generalized exponential cusp potenttal 

(6.15) 

where h > 0 and (a i }  are constants. We shall be able to solve special cases of this potential 
including the single exponential cusp, V(X) = and a more complicated cusp: 

whose limit A + I-, A + 0’ provides a solution for the Coulomb potential V ( x )  = 
-Z/lxl. 

We define an iterated integral: 

where the empty case j = 0 is defined as usual by l o ( x ,  xo. k )  = eikIx-xo~. We next establish 
a closure relation for the particular integrals l j ( x ,  0. k ) ,  in the sense that each such integral 
turns out to be a polynomial in e-hlzl. To this end we observe: 
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where 

1 1 -1 1 +- g' = pA-2ik ph +- 
ph f' = p h  - 2ik (7.5) 

from which it follows that 

I j ( x ,  0, k) = XTMjYe"IXI  (7.6) 

where X is .the vector (1, e-Alxl, e-ulxl,. . .), Y is the vector (1, O,O, . . .), and M is the 
matrix: 

M =  

with 

In view of these relations the generating function: 

takes the form: 

H ( x , O , z , k )  = X ~ ( l - Z n / l ) - ' Y e " ~ X I .  

In the case a,, =a",  where a is constant, analysis of the matrix M results in: 

,ikIxl 

det(1 - zM) H ( x ,  0, z, k) = X T C  

where the vector C is: 

c = (1, -aglz, a2g&gl - I), -a3zg3(zgl - l)(zgZ - I), ... 1 

while the determinant is: 

de t0  - z M )  = 1 - afiz + a 2 f ~ z ( z g ~  - 1) - a3f3z(zg1 - l)(zgz - 1) + . . . . 
The generating function for the case a. =a" is thus 

(7.7 ) 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

(7.15) 
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and P.1 denotes the derivative with respect to the second argument of P. 

conclude that the Green's function (3.14) for the potential: 
Now we can apply the generating function result (7.14) to specific potentials. We 

is: 

(7.16) 

(7.17) 

where Q can be expressed in terms of the Gauss hypergeometric function as: 

Q ( Y )  =eikY2~,(-s-, -s+,I-L - s+ .~e-~j" ) ,  (7.18) 

where 

(7.19) 

Further analysis along these lines results in a more general Green's function for the potential 
(7.16). For x =- 0 z xo: 

~~ 

Consider the potential obtained as A --t I-: 

(7.20) 

(7.21) 

where 2 denotes. in view of future results, a constant nuclear charge. The bound state 
energies for odd eigenstates will correspond to the zeros of Q(0) in (7.20) while the 
even states correspond to the zeros of Q'(0). Using standard relations for the Gauss 
hypergeometric function, 'for example: ~. 

(7.22) 

valid for Re(c - a - 6) z 0 (Henrici 1977), we find that the odd parity energy values 
correspond to poles of I-( 1 - L); namely as values: 

(7.23) 

for n = 1,2, . . ._ These odd-parity bound energies E only exist when the expression being 
squared in (7.23) is positive. What about the even states for the potential (7.21)? These 
correspond to zeros of Q' and are extremely difficult to analyse. The best estimate we have 
been able to obtain omthe basis of hypergeometric function theory is that the ground state 
energy for the potential (7.16) behaves in the A 3 1- limit as: . 

E - -2Z21~g2(1 - A )  (7.24) 
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which means that for the potential (7.21) the ground state ‘falls to the centre’ as A approaches 
1. In the Coulomb limit of (7.21), namely A + Of, we see that the even states above the 
missing ground state coalesce with odd states. and the Bohr energies: 

~~ 

remain. This coalescing of states can be understood in terms of degeneracy. Every bound 
state for the one-dimensional Coulomb problem is two-fold degenerate. This is because the 
wave function to the left of the origin-at which origin all wave functions must vanish-can 
have a sign factor + I  with respect to the wave function on the right hand side. 

The bound state Coulomb wave functions can be derived as follows. The residues of 
(7.20) for the potential (7.21) at the Bohr poles (7.23) give the bound state wave function 
9 n ( x )  proportional to 

exp ( - (f --- ‘i) 1x1 ) . (7.26) 

Up to a normalization constant this is the exact wave function for (7.21). The expression 
(7.26) can in turn be expressed in terms of Jacobi polynomials P(-’.zz’hn)(2e-Aixl - 1) to 
yield, in the limit A --f O+, Coulomb bound state wave functions for x 5 0 as: 

~ ( x )  = e-Z+xLA-, (225) (7.27) 

where L is the associated Legendre polynomial. These observations amount to a solution of 
the one-dimensional Coulomb problem. It should be pointed out that Coulomb perturbation 
expansions have been previously analysed by (Goovaerts and Devreese 1972) who developed 
such expansions in terms of certain density integrals of the propagator. 

One more special limit of (7.16) deserves attention. The single exponential cusp 
potential 

V(x)  -Be-’lIXI (7.2s) 

can be solved using these methods. One way is to assume the potential (7.16) and take 
the limit A --f 0, with the nuclear charge 2 - B / ( A A ) .  The result from (7.20) is, for 

n 

x > 0 > xo: 

(7.29) 

where p = h/2, (Y = ( I / A ) J ( 8 B ) ,  U = -2ik/h, k = J(2E). The even bound energies 
correspond to zeros of J:(a), while odd bound energies correspond to zeros of J,(a). In 
particular i t  is straightforward to show that there exists exactly one bound state if and only 
if B is positive but satisfies 

< AZO! (7.30) 

The transmission coefficient from (1.1 1 )  can b e  obtained via standard Bessel function 
where 20, denotes the first positive zero of Jo. 

asymptotics as (Abramowitz and Stegun 1965): 

(7.31) 

In summay, these methods~show that the generalized exponential cusp (7.1) can be resolved 
for the particular form (7.21), which leads to the Coulomb case and to the single exponential 
cusp case. 
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8. Power potentials 

The previous derivations have involved potentials for which perturbation expansions 
generally converge. One might ask about power potentials, e.g. 

V ( x )  = fx" (8.1) 

where f is a constant coupling strength. As is well known, the linear (n = 1)  and 
quadratic (n = 2) cases were solved at the inception of path integral analysis (Feynman 
and Hibbs 1965). It turns out that the perturbation series developments (3.14) and (3.15) 
can give meaningful results for the power potentials, though in some cases the perturbation 
expansions are merely asymptotic. Our~analysis begins with the formal representation of 
the transform (3.16) for the potential in terms of the nth derivative of the delta function: 

~ " ( k )  = f i"J(")(k) .  (8.2) 

With a view to the representation (3.15) we consider what one might call a cascaded 
integral: 

where j occurrences of the derivative operator are understood. Alternatively, with a view 
to (3.14) we define: 

withthe j = 0 case defined as E t )  = 1. For both spatial endpoints vanishing. the formal 
expansions in terms of these iterated intgrals I, E are, for the space-energy propagator: 

and, for the space-energy Green's function: 

These expansions are related through the identity: 

If both n and j are odd, both sides of this relation vanish. 
Consider first the linear potential (8.1) with n = 1. It can be shown by means of 

elementary calculus (Mayer 1992) that 

j odd 
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From this it follows from (8.5) that: 

which is the correct propagator for both spatial endpoints vanishing (Schulman 1981). It 
is of interest that this linear case involves a generally convergent perturbation expansion, a 
property unfortunately not enjoyed by potentials of any higher integral power. 

For the quadratic potential, take n = 2, f = 1/2 in (8.1). One may derive a generating 
function: 

j=o 

through complicated analysis, the result being: 

and conclude that the Green's function for both spatial endpoints vanishing is: 

(8.10) 

(8.11) 

(8.12) 

which shows poles at E = 1/2,5/2.9/2,. . . corresponding to the even-parity bound states. 
Along these lines it is possible to obtain the odd-parity energies by deducing that: 

(8.13) 

These results are in agreement with the known representation of the one-dimensional 
harmonic oscillator G in terms of Whittaker functions (Kleinert 1990). It has to be admitted 
that (8.10) is an asymptotic expansion of (8.11); the series is generally divergent. These 
analyses give the quadratic potential propagator (8.5) as: 

tZ  t" 61t6 
12 160 120960+" 

K("'(0, t10,O) = 1 + - + - + - 
which is in fact an asymptotic expansion for small t of the well known result: 

(8.14) 

(8.15) 

The expansion (8.14) does not converge for t 
caustic of (8.15). 

(8.1) and (8.5) of the form: 

ii, in fact the expansion fails at the first 

Finally, the elusive quartic potential f x 4  turns out to have a propagator expansion, from 

1 ( i;: 23f2t6 I+---- 
840 240 240 K'"'(0, t10,O) = - v5-z 

One would hope that Feynman-Kac limits using (1.6) and (8.16) could resolve the as yet 
unknown quartic ground state. Butj!dging from the limited convergence radius of (8.14) for 
the solved oscillator, this program is not a promising one. Nevertheless, it is conceivable 
that some method such as that of Pad6 approximants could be applied to the expansion 
(8.16) to give numerical estimates for the quartic ground state. It is possible, for example, 
to work out sufficient recursion relations for the cascaded integral (8.3) to obtain hundreds 
of terms in the expansion (8.16). What (8.16)-being a short-time expansion-tells us is 
information about the semi-classical picture. It should be possible to develop accordingly 
a higher-order WKB expansion theory using the short-time series. 



~~ 
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9.  open problems 

We have addressed the problems of the delta comb, finite well, tunnelling barrier, and-via 
an exponential cusp formalism-the Coulomb problem. Our results for. power potentials 
appear to yield correct asymptotic expansions but such expansions cannot necessarily be 
given closed form analytic solutions. 

Open problems, then, include the problem of deducing bound state energies from 
asymptotic expansions such as (8.16). Results on anharmonic oscillators might evolve 
from appropriate redefinition of the differential opera tors^ in (8.3). Another  open^ problem 
involves reflectionless potentials such as V ( x )  = -2sech’x. These potentials can be put 
in the generalized exponential form (7.1) but the ensuing matrix algebra is difficult; there 
is currently no clear path integral derivation of the propagator, even though the Green’s 
functions for such potentials are easy to derive independently from the known propagator 
forms (Gaveau and Schulman 1986, Crandall 1983) by application of the cut discontinuity 
relation (1.8). 

Another problem of note is that of the quantum pendulum, with potential V ( x )  = 
- cos(x). This problem should be solvable via iterated integrals such as (8.3), where one 
must replace the derivative operators with shift operators. Again, thk analysis has not been 
carried out, but the various methods herein look promising for such periodic potentials. 

Yet another promising case is the inverted Gaussian potentia1 V ( x )  = -Ae&. It is 
a tantalizing fact that the representation (2.12) involves integrals each of which c q  be 
expressed in closed form, as appropriate Jacobian determinants, in the large-N limit. Yet 
the perturbation series remains unsummed. 

Finally, though we have applied the combinatorial adjacency matrix relations (3.17), 
(3.18) for very special potentials, it should be possible to derive more general results. It 
is apparently possible to obtain differential equations for the space-energy propagator’s 
numerator and denominator for some U matrices not the identity (Mayer 1992). The zeros 
of the analyticdenominator would of course provide the energy poles. This work is still in 
progress, hut we remain optimistic that such a combinatorial matrix approach will lead to 
exact solutions for more general potentials. 
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